2,023 research outputs found

    Exchange bias induced by the fully strained La2/3Ca1/3MnO3 dead layers

    Get PDF
    published_or_final_versio

    Magnetoresistance in La- and Ca-doped YBa2Cu3O7–δ

    Get PDF
    We studied the microstructures, electronic, and magnetic properties on La-doped and La- and Ca-codoped YBa2Cu3O7−δ (YBCO). The superconducting transition temperature remains unchanged up to 10% for La-doped YBCO. The competition between electrons and holons was assumed according to the variation of Tc0 in La and Ca codopings in YBCO. The magnetoresistance (MR) effect is about 8%, which is observed obviously near the critical temperature and is independent of the content of La in La-doped YBCO. MR increases up to about 40% with the incorporation of Ca in La-doped YBCO. We present here possible explanations for the magnetoresistance effect in polycrystalline samples based on the microstructure and the increase of oxygen vacancies at grain-boundary interface. © 2006 American Institute of Physicspublished_or_final_versio

    Magnetically tunable properties related with carriers density in self-doped La1−xMnO3/y wt %Nb-SrTiO3 heteroepitaxial junctions

    Get PDF
    The self-doped La1−xMnO3 (x=0.1 and 0.3) thin films deposited on Nb-doped (wt % y) SrTiO3 (y=0.05 and 0.8) crystals to form heteroepitaxial junctions have been prepared by the pulse laser deposition method. The current-voltage loops of junction were measured at several fixed magnetic fields for the temperature from 10 to 300 K. We have focused on the effects of doping level and annealing time on the magnetically tunable property of the junction. The results show that these junctions have a typical temperature-dependent rectifying characteristics and asymmetrical hysteresis. The magnetically tunable property of the junction was related with the annealing time for the self-doped La1−xMnO3−δ thin film and the doping level in the Nb-doped SrTiO3 (STON) crystal. In the self-doped La0.9MnO3/0.05-STON junction annealed at 900 °C for 5 h, the relative ratio of voltage [Vb(0)−Vb(H)] /Vb(0) is about 70% at H=6 T and T=70 K for I=0.1 mA, showing a large magnetically tunable property. These results reveal the great potential of the manganites in configuring artificial devices.published_or_final_versio

    In silico Assessment of Drug-like Properties of Alkaloids from Areca catechu L Nut

    Get PDF
    Purpose: To investigate in silico the drug-like properties of alkaloids (arecoline, arecaidine, guvacine, guvacoline, isoguvacine, arecolidine and homoarecoline) obtained from the fruits of Areca catechu L (areca nut).Methods: All chemical structures were re-drawn using Chemdraw Ultra 11.0. Furthermore, software including Bio-Loom for Windows - version 1.5, Molinspiration Property Calculator and ACD/I-LAB service were used to predict the drug-like properties of the alkaloids, including relative molecular mass (MW), partition coefficient log P (cLog P), number of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), topological polar surface area (TPSA), number of rotatable bonds (NROTB), pKa, and aqueous solubility at a given pH (LogS). In addition, Lipinski’s rule was used to evaluate druglike properties.Results: From our research, MWs of the seven compounds were all < 500. HBD and cLog P values of the seven compounds were all < 5, and HBA values were all < 10. In addition, TPSA value of each compound was < 60 Å2, and NROTB value was < 10. Besides, pKa values of the seven alkaloids were > 7.5; furthermore, they possess good solubility at pH 1.0, 5.0, and 7.0.Conclusion: All the seven alkaloids possess good drug-like properties, and demonstrated good oral absorption and bioavailability. The results also suggest that these compounds can be further developed into new oral drugs for treating certain diseases.Keywords: Areca catechu L, Areca nut, Drug-like properties, Alkaloids, Arecoline, Arecaidine, Guvacine, Guvacoline, Isoguvacine, Arecolidine, Homoarecoline, In silic

    Present situation and characteristics of building energy consumption in Hong Kong

    Get PDF
    2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate

    Get PDF
    Thin Yba[SUB2]Cu[SUB3]O[SUB7-δ/La[SUB0.67]Ca[SUB0.33]MnO[SUB3] (YBCO/LCMO) films were grown on SrTiO[SUB3](STO)substrates by magnetron sputtering technique. The microstructures of the bilayers were characterized and a standard four-probe technique was applied to measure the resistivity of the samples. The interdiffusions at the YBCO/LCMO and LCMO/STO interfaces formed two transient layers with the thickness of about 3 and 2 nm, respectively. All the bilayers were well textured along the c axis. At low temperature, the superconductivity can only be observed when the thickness of YBCO is more than 25 nm. When the thickness of YBCO is less than 8 nm, the bilayers show only ferromagnetism. The superconductivity and ferromagnetism perhaps coexist in the bilayer with the YBCO thickness of 12.5 nm. These interesting properties are related to the interaction between spin polarized electrons in the manganites and the cooper pairs in the cuprates. © 2003 American Institute of Physics.published_or_final_versio

    Inhibitory effect of Herba Epimedii extract on bone turn-over of ovariectomized rats

    Get PDF
    2005-2006 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    Get PDF
    2016-2017 > Academic research: refereed > Publication in refereed journal201804_a bcmaVersion of RecordPublishe

    Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition

    Get PDF
    The strong interest in graphene has motivated the scalable production of high quality graphene and graphene devices. Since large-scale graphene films synthesized to date are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient CVD on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman "D" peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure
    corecore